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1 Empirical Analysis

1.1 Panel Regressions

Table A1 presents output growth panel specification (2) using cyclone energy as intensity metric.
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Table A1: Panel Analysis: Cyclone Strikes and Growth - Energy/sqkm
Dependent Variable: Real GDP/Capita Growthj,t
Sample: Unfiltered Has Controls

(1) (2) (3) (4) (5) (6)

Energy/sqkmj,t -0.004 -0.208*** -0.583*** -0.074*** -0.241*** 0.191

(0.010) (0.059) (0.040) (0.010) (0.073) (0.493)

Creditj,t·(Energy/sqkmj,t) 0.002*** 0.002***

(0.001) (0.001)

ln (GDP p.c.)j,t−1·(Energy/sqkmj,t) 0.059*** -0.026

(0.004) (0.049)

Domestic Creditj,t -0.000 -0.000**

(0.000) (0.000)

ln (GDP p.c.)j,t−1 -0.103*** -0.219***

(0.013) (0.033)

Country F.E.s: Yes Yes Yes Yes Yes Yes

Year F.E.s: Yes Yes Yes Yes Yes Yes

Country-Trends: Yes Yes Yes Yes Yes Yes

S.E. Cluster Country Country Country Country Country Country

Observations 7,573 5,690 7,573 1,978 1,978 1,978

#Countries 182 171 182 116 116 116

Adj. R-Squared 0.110 0.102 0.167 0.178 0.201 0.278

Table presents regression of countries’real GDP per capita growth rate in year t on cyclone energy (sum of max. wind speeds

cubed/1000 and normalized by land area) in year t plus controls for lagged natural log of real GDP per capita in level and inter-
acted with energy (Cols. 3, 6) or domestic credit provided by financial sector (%GDP) in level and interacted with energy (Cols.

2, 5). All regressions include country fixed effects, year fixed effects, country-specific linear time trends, and a constant.

Standard errors are heteroskedasticity-robust and clustered at the country level. (*** p<0.01, ** p<0.05, * p<0.1).

1.2 TFP Robustness

1.2.1 Varying Lag Lengths

Tables A2 and A3 present TFP impacts across varying cyclone lag lengths, along with Akaike/Bayesian
Information Criteria (AIC/BIC). Table A2 focuses on the DICE TFP measure, whereas Table A3
focuses on our benchmark model measure. We restrict the sample to be the same across these
specifications, so that Tables A2 and A3 extend main Table 1 Columns (1) and (2), respectively.
The results are generally similar across lag lengths, but cease to be precisely estimated as more
observations are excluded at higher lag lengths. The information criteria also imply that lower lag
lengths are preferred.

1.2.2 HP-Filtering

Table A4 shows TFP results based on HP-filtering of each country’s TFP series (using annual
smoothing parameter λ = 6.25), and regressing the natural logarithm of the cyclical components,
ln(T̃FP j,t) on year fixed-effects and cyclone measures εj,t (with robust errors εj,t clustered at the
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country-level):

ln(T̃FP j,t) = δt +
L∑
l=0

βA1+lεj,t−l + εj,t

In line with the benchmark results, we find precisely estimated negative effects of cyclone strikes
for our main model TFP measure (Column 2) and for the DICE model TFP measure in the
consistent sample (Column 1). In the unfiltered sample which includes countries without capital
stock or education information, the DICE results are again imprecise (Column 3).

1.2.3 Cyclone Energy

Table A5 presents results analogous to main paper Table 4 but using cyclone energy (maximum
wind speeds cubed summed over the lifetime of a storm over a given country) per square kilometer
- rather than maximum wind speeds per square kilometer - as cyclone intensity measure. While
the point estimates continue to suggest negative TFP impacts that last for several periods, these
estimates are generally imprecise (perhaps due to the additional weight given to outliers by the
energy measure).
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Table A4: HP-Filtered TFP Impacts: Max Wind/sqkm
(1) (2) (3)

Dep. Variable: ln (ÃDICEj,t ) ln (Ãj,t) ln (ÃDICEj,t )
Labor Measure: Pop. hc·Pop Pop.

MaxWindt -59.357*** -52.971*** 3.091***

(8.051) (8.380) (0.656)

MaxWindt−1 -29.702*** -27.829*** 1.827

(8.587) (8.228) (1.508)

MaxWindt−2 -14.360* -15.826* 3.027

(7.770) (8.696) (2.202)

MaxWindt−3 9.860 4.037 2.374

(8.059) (10.628) (1.521)

MaxWindt−4 1.362 -1.276 -0.182

(6.551) (7.161) (1.783)

Obs. 2,812 2,812 3,462

Clusters 144 144 180

Adj. R2 0.0496 0.0651 0.0507

Table presents regression of natural log of cyclical component of TFP (based on HP-filtering,

with λ = 6.25) on a constant, year fixed-effects, and cyclone intensity (max. wind speed/km2).
Cols. 1 and 3 use DICE Model TFP (labor measured by population). Col. 2 uses benchmark

model (labor measured by pop. times human capital). Cols. 1-2 use consistent sample with

available Penn World Table data on human capital and workers. Col. 3 uses unfiltered sample

incl. countries without education and labor data. Standard errors are heteroskedasticity-

robust and clustered at country level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: TFP Impacts: Energy/sqkm
(1) (2) (3)

Dep. Variable: ln (ADICEjt ) ln (Ajt) ln (ADICEjt )
Labor Measure: Pop. hc·Pop Pop.

Energyt -0.217 -0.244* -0.014

(0.133) (0.126) (0.019)

Energyt−1 -0.055 -0.074 0.035*

(0.151) (0.157) (0.019)

Energyt−2 -0.177 -0.190 0.025

(0.186) (0.187) (0.016)

Energyt−3 -0.047 -0.090 0.022

(0.151) (0.166) (0.015)

Energyt−4 0.186 0.153 0.011

(0.211) (0.228) (0.009)

Obs. 5,649 5,649 6,997

Clusters 144 144 180

Adj. R2 0.699 0.625 0.678

Table presents regression of natural log of countries’TFP on a constant, country fixed-effects,

year fixed-effects, country-specific linear time trends, and cyclone energy/thousand km2

(sum of max. wind speeds cubed). Cols. 1 and 4 use DICE TFP (labor measured by pop); Col. 2

uses benchmark (labor measured by population times human capital); Col. 3 extended (labor

measured by workers times human capital). Cols. 1-3 use consistent sample of country-years

with available Penn World Table data on human capital and workers. Col. 4 uses extended

sample incl. countries without education, labor data. Standard errors are heteroskedasticity-

robust and clustered at the country level. *** p<0.01, ** p<0.05, * p<0.1.

1.3 Depreciation Robustness

Table A6 presents a robustness check for the depreciation impact estimation in paper Table 5 but
using damage data from MunichRe instead of EMDAT (as aggregated to the country-year level
for tropical cyclones and made available by Neumayer, Plumber, and Barthel (2014)).

7



Table A6: Depreciation Impacts Robustness: MunichRe (Neumayer et al., 2014) Damage Data
Dependent Variable: ln(PropertyDamagesj,t/Kj,t)

(1) (2) (3) (4)
ln(MaxWindj,t) 3.568*** 5.945*** 0.976 1.053

(0.412) (1.062) (0.765) (0.758)
ln(MaxWindj,t)· ln(GDP pc)j,t−1 -0.039 -0.067

(0.085) (0.085)
ln(MaxWindj,t)·(Pct. Below 5m)j,t 0.020**

(0.008)
ln(GDP pc)j,t−1 -0.627 -0.919

(0.832) (0.838)
Pct. Below 5mj,t 0.207***

(0.068)
Constant 22.384*** 59.324*** 1.281 1.951

(3.740) (12.199) (7.469) (7.424)
Country Fixed Effects? Yes U.S. Only No No
Observations 320 27 320 320
Adj. R-Squared 0.196 0.602 0.169 0.190
Table presents regression of natural log of fractions of capital stock destroyed (Cols. 1-4) on

natural log of MaxWindj,t (max. wind speed normalized by country area), lagged GDP per capita

levels and max. wind interactions (Cols. 3, 4), the percentage of population living below 5 meters

elevation in levels and max. wind interactions (Col. 4), and country fixed-effects (Col 1). Col. 2

restricts sample to U.S. storms only. Damages based on Neumayer et al. (2014) aggregates of MunichRe

data. Heteroskedasticity-robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

1.4 Cyclone Intensity Monte Carlo Simulation Details

First, we use the Emanuel et al.’s (2008) cyclone frequency data to estimate the projected mean
number of storms making landfall in each country j under the future climate T2090. Next we
assume a Poisson distribution of cyclone counts (Emanuel, 2013) to randomly sample the number
of storms making landfall in each country j per year under the future climate (taking n = 5, 000
draws from the Poisson(#landfallsj|T2090) distribution for each country j). Third, for each draw
of a number of storms making landfall in country j, we then randomly sample (with replacement)
maximum wind speed from one of the 3,000 synthetic tracks per basin (5,000 tracks in the North
Atlantic Ocean) in the Emanuel data. This process thus generates random draws over annual
cyclone realizations, including years without storms. This process captures changes in expected
future intensity driven both by changes in the number and characteristics of storms. Finally, we
then fit Weibull distributions for each country.
In order to validate our approach, Figure A1 compares the estimated Weibull model’s expected

annual maximum wind speeds for each country under the current climate against their empirically
observed mean maximum wind speeds in the data. The model appears to fit the data very well,
with a correlation coeffi cient of 0.9982.
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Data

2 Quantitative Model

The benchmark model uses a TFP damage function based on the contemporaneous impacts speci-
fication (Table 4 Column 3). Figures A2 and A3 below showcase results for the case of a cumulative
5-year TFP impacts damage function instead (Table 4 Column 4). As expected, the estimated
welfare impacts are generally larger in both directions. In comparing Figures A2 and A3 to their
benchmark analogs (Figures 4 and 5), one further thing to note is that some countries no longer
have valid impact estimates here. This is because some extremely vulnerable countries end up as
‘dismal cases’in that their expected damages can no longer be properly computed over the full
integral of their Weibull wind distributions. For example, in Turks and Caicos, the model with
5-period TFP impacts predicts negative overall returns rj(.) for wind speeds above 130 knots, at
which point the model’s optimality conditions can no longer be evaluated.1

Next we consider sensitivity of the results to future cyclone tracks simulated based on alter-
native climate model input, and to the MunichRe data-based damage function (specifically based
on Table A6 Columns 1 and 2). The results are presented in Figures A4 and A5, and suggest
variable sensitivity of countries’results to these modeling choices.

1 Such highly destructive scenarios arguably have parallels in the historical record. For example, in 2017,
Hurricane Irma reportedly destroyed 90% of buildings on the small Caribbean island of Barbuda. See: Philipps,
Claire, "Irma’s Destruction: Island by Island" The Guardian, September 10, 2017. URL (accessed 11/12/2019):
https://www.theguardian.com/world/2017/sep/07/irma-destruction-island-by-island-hurricane
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Figure A2: Welfare Impacts with Cumulative (5-Year) TFP Effects
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Figure A3: Growth Impacts with Cumulative (5-Year) TFP Effects
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3 DICE Model Integration

3.1 Expected Cyclone Impacts: Alternative Climate Models

Table A7 presents results for expected global aggregate cyclone impacts across three additional
climate models, above and beyond our benchmark. The results are broadly similar across models.

Table A7: Global Aggregate Annual Expected Cyclone Impacts (%/year)
Future Climate (T2090)

Climate Model: Benchmark (GLDF) MIROC ECHAM CNRM

TFP (DICE)
Agg. Weight: GDP .0329% 0.0354% .0304% 0.0312%

Physical Capital
Agg. Weight: Capital
Damage Coeffi cients:
Country-Fixed; U.S. sep. .0110% .00775% .00568% .00732%
Current GDP, Pop<5m; U.S. sep. .0112% .00745% .00567% .00695%
Future GDP, Pop<5m; U.S. sep. .0087% .00468% .00321% .00436%
Future GDP, Pop<5m .0016% .00172% .00168% .00161%

Fatalities
Agg. Weight: Population
Damage Coeffi cients:
Country-Fixed 4.2e-05% 4.67e-05% 4.56e-05% 4.41e-05%
Current GDP, Pop<5m 3.9e-05% 4.55e-05% 4.08e-05% 4.28e-05%
Future GDP, Pop<5m 5e-06% 4.76e-06% 4.56e-06% 4.62e-06%

3.2 DICE Damage Function Coeffi cient Imputation

This section describes the derivation of the DICE climate change damage function coeffi cients
based on the results of Table 8, which represent total expected cyclone depreciation. Hold-
ing socioeconomic factors constant, total future cyclone depreciation reflects a combination of
baseline impacts and warming damages: δTotal(Tτ ) = δBase + δAdditional(Tτ ). First, given the sci-
entific literature’s common finding of linearity in the global cyclone intensity-temperature rela-
tionship (see, e.g., Holland and Bruyere, 2014), we linearly interpolate from T2090 and specify
δAdditional(Tτ ) = αTτ . Table 8 provides pairs of ‘observations’ of total damages at current and
future climates that we thus use to solve for slope parameters α via:

α =
δTotal(T2090)− δTotal(T2015)

(T2090 − T2015)
(1)

The synthetic cyclone tracks from Emanuel et al. (2008) underlying our T2090 simulations reflect
the IPCC’s A1B emissions scenario, which different climate models estimate to result (on average)
in 2.8◦C warming over 1980-99 temperatures by 2100 (IPCC, 2007). Based on Hawkins et al.’s
(2017) estimates that warming between 1986-2005 and 2015 was 0.45◦ to 0.2◦C, we thus have
T2090 − T2015 ≈ 2.35◦C.
Given that global temperatures in 2015 were already around 1◦C above pre-industrial levels, one
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additional question is whether to treat current cyclone patterns as already having been affected by
this warming. A recent review by GFDL "conclude[s] that despite statistical correlations between
SST [sea-surface temperatures] and Atlantic hurricane activity in recent decades, it is premature
to conclude that human activity —and particularly greenhouse warming —has already caused a
detectable change in Atlantic hurricane activity" (GFDL, 2018). In particular, they argue that,
while a trend can be observed in recent years, over a longer time horizon back to the 1880s, one
fails to detect a significant trend in cyclones (concurrent with the observed trend in warming) once
observational biases are adjusted. In this case, the damage function would apply only to warming
over the DICE model base year (2015), so that δAdditional(Tt) = α(Tt − T2015) (for Tt > T2015). On
the other hand, if anthropogenic warming has already been affecting cyclone patterns, the damage
function is defined over warming since pre-industrial level as for other damages in DICE. Since
both our overall global impact estimates and the difference between these scenarios are already
small, we focus on the latter case where δAdditional(Tt) = α(Tt).
We thus back out annual impact coeffi cients via (1). For example, the TFP impact coeffi cient

is calculated via:

α̂A =
(.000329)− (.000288)

2.35
= .0000173

The remaining parameters are computed analogously using the different impact pair estimates
across alternative damage function coeffi cient scenarios in Table 8.

4 Theoretical Derivations

4.1 Stationary Equilibrium Growth

This section derives the paper’s equations defining equilibrium growth (19), following the approach
in Krebs (2003a,b). Country subscripts j are omitted for legibility. First, note that the household’s
problem can be written in recursive form as:

V (w, k̃, ε) = maxu(c) + βE[V (w′, k̃′, ε′)] (2)

subject to:
w′ = w[1 + r(k̃, ε)]− c (3)

where r(.) is as defined in paper equation (15). Substituting (3) into (2) and taking the first-order
conditions (FOCs) for c and k̃′ yields:

u′c = βE[V ′w′ ] (4)

0 = βE[V ′
k̃′
]

Next, substituting in the decision rules c = g(w, k̃, ε) and k̃′ = f(w, k̃, ε) yields the Benveniste-
Scheinkman conditions:

V ′w = βE[V ′w′ [(1 + r(k̃, ε)]]

V ′
k̃
= βE[V ′w′w(1 + k̃)−2

{
[Rk(k̃, ε)− δk − (1− π)ηk(ε)]− [Rh(k̃, ε)− δh − (1− π)ηh(ε)]

}
]
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Substituting based on (4) and iterating forward then yields the Euler equation and no-arbitrage
condition, respectively:

u′c = βE[u′c′ [(1 + r(k̃′, ε′)]] (5)

0 = βE[u′c′
w′

(1 + k̃′)

{
[Rk(k̃′, ε′)− δk − (1− π)ηk(ε′)]− [Rh(k̃′, ε′)− δh − (1− π)ηh(ε′)]

}
](6)

Next, invoking the assumed utility function u(c) = c1−γ

1−γ , the budget constraint (3), and the fact that

c′ = c̃[1 + r(k̃′, ε′)]w′ (where c̃ ≡ 1− s̃ denotes the consumption-out-of-wealth ratio), substitution
and rearranging in (5) yields the desired result that:

s̃ = 1− c̃ =
(
βE[(1 + r(k̃′, ε′))1−γ]

) 1
γ

(7)

The same substitutions allow us to factor out as pre-determined terms c̃ and w′ = (1+ r)w− c in
(6). Further noting that, in stationary equilibrium, k̃′ = k̃, we obtain the desired condition:

0 = βE[

{
[Rk(k̃′, ε′)− δk − (1− π)ηk(ε′)]− [Rh(k̃′, ε′)− δh − (1− π)ηh(ε′)]

}
(1 + r(k̃′, ε′))γ

] (8)

Finally, the expression for average growth can be derived by again invoking w′ = [1+ r(k̃, ε)]w− c
and c′ = c̃[1 + r(k̃′, ε′)]w′. First, note that the definition of c̃ implies that:

c̃ =
c

[1 + r(k̃, ε)]w
(9)

→ 1− c̃ = [1 + r(k̃, ε)]w − c
[1 + r(k̃, ε)]w

Consequently, expected growth can readily be shown to equal paper equation (19), as desired:

E

[
c′

c

]
= E

[
c̃[1 + r(k̃′, ε′)]w′

c

]
= E

[
c̃[1 + r(k̃′, ε′)]{[1 + r(k̃, ε)]w − c}

c

]
= (1− c̃)(1 + E[r(k̃′, ε′)]) = (s̃)(1 + E[r(k̃′, ε′)]) (10)

4.2 Storm Risk Impacts

We first substantiate the following claim about our benchmark model:

• #1: Cyclone realizations have a negative effect on contemporaneous growth ( dgt
dεt

< 0).

This claim follow from the equation for realized growth in stationary equilibrium (19) with the
definition of portfolio returns (15) substituted in:
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gt =
ct
ct−1

= (s̃)[1 + ωk(k̃){Rk(k̃, εt)− δk − (1− π)ηk(εt)} (11)

+(1− ωk(k̃)){Rh(k̃)− δh − (1− π)ηh(εt)}]

Differentiating (11) with respect to cyclone realizations yields:

dgt
dεt

(12)

= (s̃)(1− π)
[
ωk(k̃){

∂Rk(.)

∂εt
− ∂ηk(.)

∂εt
}+ (1− ωk(k̃)){

∂Rh(.)

∂εt
− ∂ηh(.)

∂εt
}
]
< 0

where the inequality follows from the definition of factor returns (14) and our assumptions about
the damage functions as increasing in cyclone intensity.
We next illustrate the following claims:

• #2: An increase in cyclone risk has a theoretically ambiguous effect on average growth: dg
dµε

S
0. This effect may moreover be non-monotonic within a given country (i.e,. calibration).

• #3: An increase in cyclone risk may increase the savings rate (precautionary savings).

We demonstrate these claims by construction, specifically by showcasing the possibility of both
positive and negative growth impacts, and positive precautionary savings effects. In order to
maintain analytic transparency, we now work with a simpler parameterization where, each period,
there is just a binary probability φ that a cyclone occurs with intensity εt = ε, whereas, with
probability 1 − φ, no cyclone occurs (εt = 0). We assume that there are no damages if no
storm hits, that is, ηk(0) = ηh(0) = ηA(0). The mean disaster realization is thus µε = φε. For
clarity, we also separate the average depreciation term δk back into its underlying components:
δk = δk + πµ

k = δk + πφη
k(ε), and analogously for human capital. In this setting, expressions (7)

and (8) become:

s̃ = β
1
γ

[
φ

{
(1 +

[
ωk(k̃)[Rk(k̃, ε)− δk − πφηk(ε)− (1− π)ηk(ε)]

+(1− ωk(k̃))[Rh(k̃, ε)− δh − πφηh(ε)− (1− π)ηh(ε)]

]
)1−γ

}
(13)

+(1− φ)
{
(1 +

[
ωk(k̃)[Rk(k̃, 0)− δk − πφηk(ε)] + (1− ωk(k̃))[Rh(k̃, 0)− δh − πφηh(ε)]

]
)1−γ

}] 1
γ

φ


[
Rk(k̃, ε)− δk − πφηk(ε)− (1− π)ηk(ε)

]
−
[
Rh(k̃, ε)− δh − πφηh(ε)− (1− π)ηh(ε)

]
)

(1 +
[
ωk(k̃)[Rk(k̃, ε)− δk − ηk(ε)(πφ+ 1− π)] + (1− ωk(k̃))[Rh(k̃, ε)− δh − ηh(ε)(πφ+ 1− π)]

]
)γ


+(1− φ)


[
Rk(k̃, 0)− δk − πφηk(ε)

]
−
[
Rh(k̃, 0)− δh − πφηh(ε)

]
(1 +

[
ωk(k̃)[Rk(k̃, 0)− δk − πφηk(ε)] + (1− ωk(k̃))[Rh(k̃, 0)− δh − πφηh(ε)]

]
)γ

 = 0
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While it is possible to apply the implicit function theorem to these two equations to derive analytic
expressions for dk̃

dε
, ds̃
dε
, and thus ultimately dg

dε
, we have not found these expressions to be instructive.

We therefore analytically illustrate the possibility of higher average growth and savings due to
higher storm risk in the simplest possible case where human and physical capital are perfectly
symmetric. That is, assume that both types of capital are equally vulnerable to cyclone damages
ηk(εt) = ηh(εt) ≡ η(εt), enter production symmetrically (with Cobb-Douglas exponents α = 1 −
α = 0.5), and have equal baseline depreciation rates δk = δh ≡ δ. In this case, it is straightforward
to show that the optimal capital share equation is solved by k̃∗ = 1, implying equal optimal
investment in both types of capital in stationary equilibrium. The optimal savings rate (13) in
the symmetric setting then reduces to:

s̃ =
(
βE[(1 + r(k̃′, ε′))1−γ]

) 1
γ

(14)

= β
1
γ

[
φ(1 +

A(1− ηA(ε))
2

− δ − η(ε)(πφ+ 1− π))1−γ + (1− φ)(1 + A

2
− δ − πφη(ε))1−γ

] 1
γ

where A denotes total factor productivity with cyclone impact function (1 − ηA(ε)), where, for
simplicity, we also assume that ηA(ε) = η(ε). Here, the impact of a change in storm risk on
optimal savings depends only on its direct effect in (14), and is given by:2

ds̃

dε
= β[s̃]1−γ · (1− γ)

γ
·
[
φ(1 + r(ε))−γ{A

2
+ φπ + 1− π}+ (1− φ)(1 + r(0))−γ{φπ}

]
· (−1)∂η

∂ε
(15)

where the portfolio returns in case of a storm r(ε) = A(1−ηA(ε))
2

− δ − πφη(ε) − (1 − π)η(ε) or no
storm r(0) = A

2
− δ − πφη(ε) and s̃ are all as in (14).

Since depreciation damages are assumed to be increasing in storm intensity (∂η
∂ε
> 0), expression

(15) immediately shows that the equilibrium savings rate is increasing in average storm intensity
if γ > 1, unaffected by storm risk if γ = 1 (logarithmic preferences), and decreasing in storm risk
if γ < 1:3

ds̃

dε
=


> 0 if γ > 1
= 0 if γ = 1
< 0 if γ < 1

(16)

Given (10), the corresponding change in average growth due to storm risk is then given by:

dg

dε
=
ds̃

dε
(1 + E[r(ε′)]) + (s̃)

d(1 + E[r(ε′)])

dε
(17)

2 That is, there is no additional indirect effect via a change in k̃.
3 This conclusion follows from the fact that, over the permissible range of parameter values (where 1+r(ε) > 0),

all terms in (15) are positive except for
[
−∂η(.)
∂ε

]
, which is negative, and (1 − γ), whose sign consequently

determines the overall sign of (15).
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where ds̃
dε
is given by (15), s̃ remains defined by (14), and:

E[r(ε′)] =
A

2
[φ(1− η(ε)) + 1− φ]− δ − πφη(ε)− φ(1− π)η(ε) (18)

d(1 + E[r(ε′)])

dε
= φ(−∂η

∂ε
)(
A

2
+ 1) < 0

In the relevant range of the parameter values (for which well-defined interior solutions exist), we
therefore see that:

dg

dε
=

ds̃

dε︸︷︷︸
S0

(1 + E[r(ε′)])︸ ︷︷ ︸
>0

+ s̃︸︷︷︸
>0

[φ(−∂η
∂ε
)(
A

2
+ 1)]︸ ︷︷ ︸

<0

(19)

It immediately follows from (19) that average growth is unambiguously decreasing in storm risk
whenever γ ≤ 1, as this condition implies a negative effect of storm risk on savings as per (16).
In contrast, if agents are suffi ciently risk averse with γ > 1, average growth may be increasing in
storm risk.
To complete the characterization of dg

dε
, we follow as in the empirical part of the paper:

η(ε) = ξ1(ε)
ξ2 (20)

Figure A5 showcases this possibility by displaying average growth as a function of average storm
risk µε = φε (while varying ε) for different values of γ in a calibration that assume the same
functional form for η(ε) = ξ1(ε)

ξ2 as in the benchmark, and sets the parameters to β = 0.985,
A = 1, φ = 0.1, δ = .1, ξ1 = 0.5, and ξ2 = 2 as an example:
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Figure A6 demonstrates that the effect of storm risk on growth dg
dε
may be ambiguous in sign

not only across but even within calibrations, concluding our illustration of Claim #2. We lastly
illustrate the following claim:

• Claim #4: Cyclone risk can affect growth and welfare in opposite ways.

Given that we have already demonstrated that cyclone risk can decrease average growth (in-
cluding in cases where γ > 1), we substantiate this case by showing that this same increase in
cyclone risk results in a decline in welfare. Following the same approach as Krebs (2003b), we
re-write household lifetime utility (focusing on the relevant case with γ > 1) as:

U0 ≡ E0

∞∑
t=0

βt
c1−γt

1− γ =
c1−γ0

1− γ + β
E0[{c0g(k̃, ε)}1−γ]

1− γ + β2
E0[{c0g(k̃, ε)g(k̃, ε)}1−γ]

1− γ ... (21)

where initial consumption c0 = (1 − s̃)(1 + r(k̃0, ε0))w0 is pre-determined (since h0, k0, and ε0
are given) except for the equilibrium savings rate s̃, and g(.) is the consumption growth factor
gt ≡ ct

ct−1
= (s̃)[1 + r(k̃, εt)]. Given the assumption of independently distributed shocks and

following Krebs (2003b) one can write (21) as:

E0

∞∑
t=0

βt
c1−γt

1− γ =
c1−γ0

(1− γ)(1− βE0[g(k̃, ε)1−γ])
(22)

Intuitively, cyclone risk increases should always be welfare-decreasing in our setting as households
could have chosen to save more and throw away more of their income even in the absence of such
risk increases. In order to formally demonstrate welfare in the same setting giving rise to positive
growth effects, we numerically evaluate (22) at the same parameters as in Figure A6 (evaluated
variably for initial conditions ε0 = 0 or ε0 = ε). Figure A7 confirms that welfare declines with
cyclone risk.
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