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Abstract

We examine whether countries adapt to hurricanes. A spatially re-
fined global tropical cyclone data set is created to test for adaptation.
We find evidence of adaptation in most of the world by examining the
effects of income, population density, and storm frequency on dam-
age and fatalities. In contrast, there is no evidence of adaptation to
damage in the United States leading to a damage function which is
fourteen times higher than other developed (OECD) countries. (JEL
D81, O1, O2, Q54, Q56, R5)

Over the last decade, the average annual global damage from tropical

cyclones (hurricanes) has reached $26 billion dollars with 19,000 lives lost

(Mendelsohn et al., 2012; CRED, 2012).1 These losses measure the remaining

damage and fatalities given existing adaptation. But what would the damage

and life lost have been if no adaptation had occurred? What evidence exists

that there have been any adaptations? This paper seeks to quantify the

answers to these questions from an empirical analysis of the damage and

fatalities caused by individual tropical cyclones from around the world.

1These figures represent the average damages and fatalities from 1990 to 2008. If two
very high fatality outlier landfalls are excluded, the average fatalities per year drops to
approximates 4,300.
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The literature on natural hazards has long been concerned about adap-

tation. Analysts have explored whether development or institutions lower

the toll taken by earthquakes, cyclones, floods, and fires (Kahn, 2005; Toya

and Skidmore, 2007; Kellenberg and Mobarak, 2007; Fankhauser and McDer-

mott, 2014). This hazard literature has found evidence that income matters,

suggesting that people and governments do significantly reduce the mortality

rates from natural hazards as they get wealthier. Past studies have also ex-

amined whether countries that experience frequent hazards have lower resid-

ual impacts (Fankhauser and McDermott, 2014; Hsiang and Narita, 2012;

Neumayer et al., 2014; Schumacher and Strobl, 2011; Keefer et al., 2011).

This study uses tropical cyclones to examine this question more precisely.

The advantage of looking at just one type of hazard is that one can care-

fully account for the intensity of that hazard, which turns out to be a very

important explanatory factor. For example, wind tunnel experiments reveal

that damage increases with the cube of wind speed (Emanuel, 2005; Emanuel

2011). Wind experiments also imply that if you placed twice as much as-

sets in the wind tunnel, there would be twice as much damage. Because

GDP is generally proportional to assets, empirical work on tropical cyclones

have “normalized” damage by dividing damage by GDP (Hsiang and Narita,

2012; Nordhaus, 2010; Pielke et al., 2008; Pielke and Landsea, 1998). The

cyclone literature is effectively assuming that the elasticity of GDP/capita

(income) and population are unitary. Similarly, dividing fatalities by popu-

lation normalizes fatality risk (Kahn 2005) but also implicitly assumes that
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the population elasticity of fatalities is unitary.

In this paper, we argue that these normalization assumptions of the liter-

ature are reasonable predictors of potential impacts, what one would expect

if there is no adaptation. Without adaptation, the damage function should

have an income elasticity of 1, the fatalities function should have an income

elasticity of zero, and population or population density should have an elas-

ticity of 1 in both the income and fatalities function. We empirically measure

the actual elasticities of both income and population for both the fatality and

damage function. We use as a measure of adaptation the extent to which

predicted damage from these empirical functions is less than potential dam-

age.

We follow Hsiang and Narita (2012) by examining global tropical cyclones.

However, our empirical analysis is different in several key ways. First, we

test hypotheses about the elasticity of income and population to measure

adaptation. Second, we use each storm as a separate observation. Hsiang

and Narita average the storms striking a country each year. Unfortunately,

storm damage is a highly nonlinear function of storm intensity. Averaging the

characteristics of storms seriously biases the results. Third, we supplement

the available data on damage and fatalities by collecting information about

the intensity of each storm and the precise location it struck land. We then

measure the income and population density near that contact point. For

small countries, we use each country as the observation as did Hsiang and

Narita. For larger countries, however, we rely on subnational observations.
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Using subnational observations in large countries is important because the

affected areas may have higher incomes and population densities (as in the

US) or lower incomes and population densities (as in Australia) than the

national average. We then regress the observed damage and fatalities per

storm on the cyclone intensity as well as the population density and income of

the affected area. Finally, we follow Hsiang and Narita and test the whether

storm frequency affects observed damage and fatalities. However, instead

of using the frequency of all cyclones, we include the predicted frequency of

both low and high intensity storms.

The paper finds ample evidence of adaptation around the world. The

results suggest that countries and private actors have taken effective mea-

sures to reduce the potential damage and the potential fatalities from tropical

cyclones. An important exception to this rule is the income elasticity of dam-

age in the United States which is unitary implying no sign that adaptation

is being undertaken (although fatalities have been reduced). Although the

United States is struck by only 4% of global cyclones, cyclone damage in the

United States is 60% of the global damage. Cyclone damage in the United

States may also be an example of potential impacts (no adaptation).

1 Theory

Faced with a set of risks, firms, individuals, and governments often take

steps to protect themselves and reduce potential risk. We define risk reduc-

4



tion (tropical cyclone adaptation) as any action that reduces the expected

damage or fatalities from a storm. These include actions taken far in ad-

vance of any storm and actions taken as a storm approaches. They consider

both actions taken by governments and actions taken by private citizens and

firms. For example, improvements in forecasting and tracking as well as ad-

vanced warning systems are known to be effective tools to reduce fatalities

because they allow people to take precautionary measures. Large infrastruc-

tural development in flood protection including levees, river channelization,

mangrove plantations, and beach nourishment can protect people and prop-

erty from storm surge and fresh water flooding. Improvements in building

codes can lead to stronger and more resilient dwellings that resist high winds

and floods. Zoning ordinances can keep people and buildings away from high

risk locations. Increased urbanization may also be an adaptation if it auto-

matically pushes people towards sturdier multiple unit dwellings and more

effective local governments. Insurance and relief programs do not eliminate

risk, they merely compensate affected parties. Fair insurance can facilitate

adaptation because the premiums provide a clear measure of the expected

risk. Similarly, subsidized insurance may reduce adaptation by effectively

understating the risk to policy holders. In the extreme, free insurance would

encourage actors to make no adaptations since they are fully compensated

no matter what happens.

Adaptation drives a wedge between observed and potential damage and

fatalities (Brooks, 2003; Fankhauser and McDermott, 2014). To empiri-
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cally identify this adaptive wedge between observed and potential losses, we

first characterize the distribution of human population and capital stock in

harm’s way. Gridded global population data are available (Dobson et al.,

2000; Bhaduri et al., 2002; CIESIN et al., 2005) but spatially-explicit census

data on the global capital stock across time are not available. Several proxy

databases exist (Nordhaus, 2006; De Bono, 2013) but the detailed variation

across space is driven mainly by population rather than income per capita

assumptions.

We follow the literature by predicting the capital stock from population

and income. We rely on empirical evidence to link capital stocks with income

and population.2 We calculate the ratio between capital and per capita gross

domestic product (GDP per capita) to be 2.65 using 2005 country-level data

from the World Bank.3 This is similar to the 2.8 value from Hallegate et

al. (2013) and the 3.1 value from Kamps (2004) but well below the 5 value

assumed by Hansen et al. (2011). We assume the per capita capital stock,

K, is:

K = 2.65Y

where Y is income per capita.

The potential damage per storm, PDx, is the damage expected in the

absence of adaptation. Potential damage is assumed to be proportional to

the per capita capital stock, K, as composed of the population struck by

2Graphs and additional supporting evidence are available in the Appendix.
3R2 value of 0.96.
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the storm, Pop, and the affiliated per capita income, I. Since we do not

have a measure of the actual size of each storm, we assume that the pop-

ulation affected by a storm can be measured using the average population

density at the location where the storm first strikes land. A majority of

the damage from most tropical cyclones occurs in the coastal counties near

where the storm lands (Strobl, 2011). Potential damage is also a function of

the intensity of the storm, I, which we measure using maximum wind speed

and minimum pressure. We assume (but later test) that intensity has a con-

stant elasticity with respect to damage. Potential damage has the following

functional form:

PDx = α0Y PopI
α3

Similarly, we assume that the potential fatalities per storm, PFx, is pro-

portional to population density, Pop, and has a constant elasticity with re-

spect to storm intensity, I,:

PFx = β0PopI
β3

With no adaptation, income does not enter the potential fatalities function.

People of every income are equally likely to die from the event if nobody takes

precautions. The parameters, α and β, are assumed to be positive implying

an increase in any of the above factors are expected to increase potential

impacts, including increases in income (dPD
dY

> 0), increases in population

density ( dPD
dPop

> 0 and dPF
dPop

> 0), and increases in storm intensity (dPD
dI

> 0
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and dPF
dI

> 0).

We next assume that individuals choose some level of adaptation, A,

with benefit B(A) and cost C(A). Assuming that the adaptation benefit and

cost functions are well behaved, the optimal adaptation, A∗, occurs when

the marginal benefit equals the marginal cost, MB(A∗) = MC(A∗). We do

not assert that adaptation is necessarily efficient in this paper. We simply

test whether individuals, firms, and governments respond to higher levels

of benefits of adaptation by doing more adaptation. That is, we assume

actors choose some nonzero level of adaptation denoted by A1 based on the

marginal damage function MD1 in Figure 1. With adaptation level A1, the

total observed damage equals the area of triangle A1EA3 whereas the total

potential damage (with no adaptation) is triangle 0MD1A3. The fraction of

potential damage removed, θ(A), is θ(A) = (0MD1EA1)/(0MD1A3). Note

that the removed damage is not the welfare gain of adaptation. The welfare

gain of adaptation A1 is the area below the MB1(A) and above MC(A)

curve, as one must subtract the adaptation cost.4 Observed damage, Dx, is

the product of potential damages times the fraction of damage removed by

adaptation: Dx = θ(A) · PDx.

Several factors can shift the MB(A) curve, from MB1(A) to MB2(A)

in Figure 1, impacting the level of potential and observed damages. The

4There terms can be equivalently defined by the following integrals:
∫ A3

A1
MB1(A)dA for

observed damage,
∫ A3

0
MB1(A)dA for potential damage, and

∫ A3

0
MB1(A)dA−

∫ A3

A1
MB1(A)dA∫ A3

0
MB1(A)dA

for the adaptation impact θ(A).
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Figure 1: Marginal Costs and Marginal Benefits of Adaptation

marginal benefit of adaptation increases with income, population, storm in-

tensity, and underlying storm frequency (Π). Under an efficient solution, this

would also increase the equilibrium level of adaptation. However, we do not

require optimality, we simply test whether A2 > A1. That is, we test whether

adaptation increases as income, population density, or storm frequency in-

creases ( dA
dY

> 0), ( dA
dPop

> 0)5, ( dA
dΠl

> 0) and ( dA
dΠh

> 0). We specifically

examine the effect of predicted frequencies of both low (Πl) and high (Πh)

intensity storms. Incorporating potential demand shifters, we approximate

5This may be especially true if public adaptation is focused on areas with more people,
but if adaptation costs increase in population, then there may be no increase in adaptation.
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θ(A) with the following constant elasticity functional form:

θ(A) ≈ (1− γ0)Y −γ1Pop−γ2I−γ3x Π−γ4
l Π−γ5

h

The γi terms equal zero if there is no adaptation. The observed damage will

have the following expression:

Dx = α0(1− γ0)Y 1−γ1Pop1−γ2I
α3−γ3
x Π−γ4

l Π−γ5
h

Similarly, observed fatalities, Fx, from storm x are the multiplicative product

of potential damages and adaptation, Fx = θ(A) · PFx:

Fx = β0(1− γ0)Y −γ1Pop1−γ2Iβ3−γ3x Π−γ4
l Π−γ5

h

The test can be a comparative static analysis if it relies on cross sectional

evidence from one country to another. The test can be dynamic if it relies on

inter-temporal changes within a country. In both cases, the analysis explores

whether adaptation increases as factors that would increase the potential

benefits of adaptation increase. If no adaptation is present in economic

damage and fatalities, then γi = 0 for i = {0, 1, 2, 3, 4, 5}. Whether γi > 0

is a testable hypothesis for the existence of adaptation. That is, adapta-

tion is present in economic damage to the extent that the income elasticity

and population elasticity are less than unitary (1). Adaptation would also be

evident if the historic frequency of storms lowers the damage per storm. Sim-
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ilarly, adaptation is present in fatalities if the elasticity of income is negative,

the elasticity of population is less than one, or the elasticity with respect to

frequency is negative. Note however, that the potential coefficients of the

constant term and of the intensity of storms is not known and so cannot

be used to test for adaptation. Relative comparisons within the sample can

be made but there is no theoretical threshold for the constant and intensity

coefficients.

We assume that coefficients below these critical values are evidence of

adaptation and not something else. Of course, there may be omitted variables

that explain why coefficients are greater than zero that are circumstantial

rather than a reflection of adaptation. For example, urban dwellers may be

more educated and so take more precautions than less educated rural people.

This may lead the population density variable to have a negative coefficient

but it is really education that is driving the adaptation, not population.

In this study, we are assuming that there are many possible actors that

can adapt including households, firms, and farms as well as local and state

governments. We are assuming that private actors focus on reducing just

their own damages, while governments focus on reducing the damages to all

the people in their jurisdiction. This analysis does not distinguish who is

doing the adaptation. We therefore are examining the combined effect of

private individuals, firms, and governments. We do not know to what extent

adaptation to economic damage is a complement or substitute to adaptation

to fatalities. We also do not know how the direct hurricane losses relate to
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longer-term recovery or other important fiscal costs of hurricanes (Deryung-

ina, 2013). Lastly, we do not address the costs of adaptation and therefore

do not calculate the net benefits of adaptation. However, much literature

finds that benefits can often far outweigh costs for coastal adaptation to salt

water inundation from sea level rise (Yohe et al., 1995; Ng and Mendelsohn,

2005; Hunt et al., 2011; Neumann et al., 2011).

2 Empirical Strategy

Guided by the theoretical framework above, we use panel data to test for the

presence of adaptation to tropical cyclone damages and fatalities. We first es-

timate damage and fatality functions using a log-log functional form through

cross-sectional and panel techniques6. The resulting estimated coefficients

can be interpreted as elasticities. We then test to see if these elasticities are

different from the values expected with no adaptation. We refine these tests

by estimating several regressions across different subsamples. For example,

we partition countries into low income and high income nations and exam-

ine the coefficients for each subsample. We also compare dense and lightly

populated countries. Using just the sample of subnational observations, we

also compare the impacts of storms that struck rural versus urban commu-

6Count data estimation are shown in the Appendix. The results support the findings
of our cross-sectional and error components models. We also test a Seemingly Unrelated
Regression (SUR) approach, but due to the fact that our explanatory variables across the
damages and fatalities equations are identical in this analysis, there is no efficiency gain
relative to OLS and the estimated coefficients are identical.
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nities. Finally, we compare the elasticities of the United States, the rest of

the OECD, and the rest of the world.7

We use both a cross-sectional model and an error components model

with country and time fixed effects to calculate damage and fatality func-

tions. Cross-sectional analysis uses variation across time and space to iden-

tify parameters of interest, whereas the identifying variation for our error

components model occurs in deviations from country and year averages.

Broadly, cross-sectional results can shed light on long-run patterns of adapta-

tion (Mendelsohn et al., 1994). To the extent that some adaptation changes

very slowly over time, the within-country and within-year variation will not

capture adaptive changes on these broader scales. However, cross-sectional

analysis may be confounded by time-invariant omitted variable bias that our

error components model will subsume. Lastly, panel data and cross-sectional

results often have a different economic interpretation, as short term shocks

are different than long term adaptive potential (Timmins and Schlenker,

2009; Samuelson, 1947). Due to the strengths and weaknesses of each

technique, we present both models herein.

Guided by rich previous scientific justification for a power model rela-

tionship between damage and wind speed (Emanuel, 2005; Emanuel 2011;

Pielke and Landsea, 1999), and acknowledging that wind, alone, does not

completely determine impacts (Powell and Reinhold, 2007), we test various

7See the Appendix for a detailed explanation of specification tests and explanatory
variable choice.
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functional forms and model specifications (see Appendix). Ultimately, we

affirm the previous literature and also find that the log-log functional form

is the best fit. Therefore, we model damages for cyclone landfall j at time t

in country i as:

lnDijt = α0+α1lnYit+α2lnPopit+α3lnIijt+α4lnLijt+α5lnΠhi+α6lnΠli+αi+γt+uijt

and for fatalities:

lnFijt = β0+β1lnYit+β2lnPopit+β3lnIijt+β4lnLijt+β5lnΠhi+β6lnΠli+αi+γt+uijt

where Dijt is direct economic damages and Fijt is the number of fatalities.

These impacts are explained by Yit, the income per capita in country i at

the time of cyclone j; Popit, the population density; Iijt, the intensity of

cyclone j when making landfall in country i; Πli, the long-term frequency

of low intensity storms in country i; and Πhi, the long-term frequency of

high intensity storms in country i. Lij, a variable for landfall, is 1 if the

cyclone j made a direct landfall on the country i and otherwise equal to the

distance in kilometers of the storms’ closest approach. Since the variable

Lij is not present in our theoretical model, as a robustness check we also

drop this variable in the Appendix and find no change in the overall results.

In the error components model, we also include fixed effects for time (γt)

and country (αi). uijt is a mean-zero error term. Explanatory variables are

identical between the cross sectional and fixed effects specification except for
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the year, γt, and country, αi, fixed effects which subsume the high and low

intensity cyclone frequency variables.

We estimate both functions using the Ordinary Least Squares (OLS) es-

timator. We also cluster standard errors at the country level in all specifica-

tions unless noted otherwise, to account for any within-country correlation

across error term observations8. While we include near misses in our main

result, we present results with near misses dropped in the Appendix, thereby

allowing our empirical model to exactly replicate our theoretical model. The

results do not change with the inclusion of near misses.

Unlike the previous literature that aggregates events to country-year av-

erages (Hsiang and Narita, 2012; Neumayer et al., 2014; Noy, 2009; Kahn,

2005), one major difference in our analysis is that our unit of observation

is a single storm striking a country. This means that if three storms strike

a single country in one year, we treats this as three observations. There

are several advantages to this approach. First, this ensures that any miss-

ing storms or missing data on storm impacts are not treated as zero and

therefore change the measurement of damage in an observation. Second,

we directly model damage and fatalities at the storm level. Thus, we can

use more spatially refined data, including individual storm characteristics at

their point of landfall instead of national averages. We can also include the

income and population density of the region actually affected by the storm

8Ferreira et al. (2013) note the importance of country-clustered standard errors for
cross-country disaster analyses.
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instead of using national average statistics. Lastly, we do not normalize the

dependent variable, cyclone impacts, by population or GDP, but rather both

as independent variables in the regression.

In the Appendix, we present count data technique results for fatalities,

estimating semi-log regressions with the Negative Binomial estimator. We

test for and find evidence of over-dispersion in the data, implying that the

Negative Binomial estimator is preferred to the Poisson. We find that OLS

is appropriate when modeling the log of damage, as this variable follows a

normal distribution rather than a Poisson or Negative Binomial distribution.

Fixed effects negative binomial results are included, but should be interpreted

with caution as there is still some debate in the literature as to the proper

implementation of fixed effects in these models (Greene, 2007). The results

support the findings of our cross-sectional and fixed effects results. We also

use the Seemingly Unrelated Regression Model to potentially leverage effi-

ciency gains over OLS through exploitation of any correlation in the error

terms. However, we do not find this changes the main results and present

the results in the Appendix.

In addition to these main results, we estimate elasticities to test selected

sub-samples including elasticities across: levels of development, spatial scales

(national versus local, presented in the Appendix), urban versus rural, and

amongst the United States, other OECD countries, and the rest of the world.

The income elasticity in the United States damage function implies that

there is no adaptation to damage in the United States. One final comparison
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utilizes the results of this last set of regressions to compare what would

happen in each region if it had the climate coefficients of another region. For

example, we compare the cyclone damage that would happen in the United

States if the United States had the coefficients of the rest of the OECD.

2.1 Data

For the empirical analysis, we build an original dataset of more than 1,400

storm landfalls around the Earth from 1960 to 2010. The cumulative damage

from these storms totals almost $0.75 trillion 9 and approximately 400,000

lives lost. We drop observations from before 1960 because global observations

of earlier storms were more erratic and estimates of damage and lives lost

were unreliable (HRD, 2014). Hsiang and Jina (2014) correctly note that

6,700 storms have been recorded by humans since 1950, but many of these

storms do not make landfall and fewer still can be linked with direct economic

damage or human fatalities. Thus, our dataset represents the full record of

storms between 1960 and 2010 that can be matched with publicly available

damages and fatalities. We present summary statistics in the Appendix.

Historical cyclone landfall damages and fatalities records from the EM-

DAT Emergency Disaster Database (CRED, 2012) and Nordhaus (2010) are

matched with tropical cyclone characteristics compiled by NOAA IBTrACS

v03r03, U.S. Navy Tropical Cyclone Reports, and Nordhaus (2010). Both

maximum wind speed and minimum sea level pressure are tested as proxies

9All dollar values in this paper are in terms of real 2010 $USD.

17



for cyclone intensity. Additionally, we include the Power Dissipation Index

and Accumulated Cyclone Energy Index as cyclone intensity proxies in the

Appendix.

Ideally, analyses of damages and fatalities would control for the exact pop-

ulation and capital impacted by the storm. However, the spatial extent of a

storm is not recorded by IBTrACS for most storms10. Most cyclone studies

use country-level socioeconomic variables as proxies. We collect both coun-

try and sub-country data. We collect country-level population density and

per capita income data come from the Penn World Table v7.111, USDA ERS

International Macroeconomic Data, the CIA World Factbook, and Columbia

CIESIN’s Gridded Population of the World v3. In addition to national data

collected annually for the globe, we also collect sub-national, secondary polit-

ical unit (county-level) population density and income per capita data for six

large countries (Australia, China, India, Japan, Philippines, United States,

and Mexico at the state-level) using official census records. This represents

approximately 60 percent of our sample of storms. The remaining countries

are small- to medium-sized whose national statistics more closely represent

the local levels. This allows us to more accurately assess the socioeconomic

conditions at landfall. Note, too, that by using income per capita (instead

of national GDP) and population density (instead of total population) we

10The radius of maximum winds is recorded for a limited number of recent storms in
the Northern Atlantic.

11Based on Johnson, Larson, Papageorgiou, and Subramanian (2009) comparison on the
new Penn World Table results, we also test the Penn World Table v8 results. We find no
change in our results. See also our discussion in the Appendix.

18



can change spatial scale without impacting the overall level of damages. For

example, if our relevant geographic unit is half as large as the country, our

estimated damages and fatalities will not be half the magnitude. We test the

importance of using country versus sub-country data in the Appendix. We

also test both market exchange rate and purchasing power parity definitions

for income per capita and present our results in the Appendix.

Except for small islands, most storms only affect a fraction of the peo-

ple and capital of a nation. By relying on subnational measures for large

countries, we seek to reduce the measurement error associated with using

national statistics. This may well result in much larger coefficients compared

to national scale studies. Further, by carefully measuring the effect of per

capita income rather than simply dividing damage by GDP, we expect to

more faithfully measure the underlying damage function. Similarly, by in-

cluding population density rather than simply dividing fatalities by national

population, we expect to get a much more accurate measure of the tropical

cyclone fatality function.

Finally, a hurricane generator is used to predict the long-term frequency

for low and high intensity storm landfalls for each location (Emanuel et al,,

2008). We turn to simulation data because the historical record of storm

tracks is thin and heterogeneous in quality across time and space. This is es-

pecially true before the development of the Dvorjac technique that greatly im-

proved accuracy in estimating hurricane strength and the large-scale satellite

deployment in the 1970s that improved measurement (Velden et al., 2006).
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A total of 68,000 simulated cyclone tracks generated by Kerry Emanuel are

used to predict the frequencies by location around the world (Emanuel et al.

2006; Mendelsohn et al., 2012). For the purposes of this analysis, low inten-

sity storms have 10-minute sustained maximum wind speeds that rank them

between a tropical depression and Category 3 strength (34 to 115 knots).

High intensity storms include all Category 4 and 5 storms (greater than 115

knots), based on wind speed (NHC, 2012). We present the summary statis-

tics of the sample in the Appendix. We map the storm observations by storm

intensity (minimum sea level pressure) in Figure 2. Altogether, 87 countries

report damage from tropical cyclones and they are all represented. Only

observed landfalls are included in the database except for islands. Because

some small islands were observed to have hurricane damage even though they

were not struck by the eye of a hurricane, we also include a small set of near

misses for islands. With the near misses, we record how close the eye came

to the island.
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With any data, measurement error is possible. In this analysis, mea-

surement error is a potential concern for impacts (EM-DAT), socioeconomic

variables, and cyclone intensity (IBTrACS) data. All are addressed herein.

The damage and fatality data are a potential source of potential classical

measurement error and even strategic reporting bias. The bias introduced

by strategic reporting could impact accuracy in both directions: countries

may try to under-report damage to appear more capable, while other coun-

tries may try to over-report damage to encourage international aid, relief, and

sympathy. This could be particularly true for lower income countries. Poor

countries may simply not have the resources to measure damage accurately.

Classical measurement error will cause no bias in the regression coefficients

but systematic errors may cause bias. EM-DAT, the data provider, takes

care to collect data from multiple sources and verify the accuracy of the

reports. If countries consistently misreported data, then it would be ob-

served during cross-verification by EM-DAT from reports by the UN, World

Bank, Red Cross, and other organizations. EM-DAT prioritizes data from the

most trusted sources. In addition, we control for potential strategic report-

ing through selective sub-sample regressions, assuming that within groups,

countries will not systematically differ in their incentives to mis-report. We

present our findings in the Results section and also the Appendix. If strate-

gic reporting does exist, we do not find that it fundamentally changes our

results.

Income and GDP records may also have measurement error in reporting
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and estimation. As such, we use a variety of data sources, including the Penn

World Table and USDA ERS International Macroeconomic Data, and test

both market exchange rate and purchasing power parity variable definitions.

We also use our low versus high income partitioned regression results to

address potential measurement error concerns. Assuming the measurement

error is not consistent across data sources or within levels of development,

similar empirical results give us confidence that potential measurement error

is not a large factor biasing estimates.

There is some measurement error in the storm intensity record. Scientific

ability to accurately describe storm intensity greatly improved in the 1970s

and 1980s with large scale satellite deployment and technique improvements

(Velden et al., 2006). We consequently compare the results using multiple

proxies for storm intensity including wind, pressure, PDI, and ACE. The

results are comparable. However, we find that minimum sea level pressure is

the best explanatory variable of intensity, leading to the best fit (Gray et al.,

1991; and see our discussion in the Appendix and the Results section). We

consequently emphasize the minimum sea level pressure results in the text.

Alternative results are shown primarily in the Appendix.

EM-DAT is the best publicly available source of global natural disaster

data (Tschoegl et al., 2006; Guha-Sapir and Below, 2002) but they do not

record all historical cyclone landfalls. EM-DAT censors low impact storms

with minimum damage and fatality criterion12. Low impact storms that hap-

12A cyclone must meet at least one of the following criterion to be included in EM-
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pen to cause few deaths or little damage are not recorded. This was especially

problematic in the early years of EMDAT and explains why we did not use

data before 1960. This censuring of less harmful storms could potentially

cause the coefficient on intensity to be underestimated. To test for the im-

portance of this effect, we compare an OLS estimator with a time fixed effect

estimator of the damage and fatality functions. Controlling for time should

reduce the bias from the censuring by controlling for the difference between

missing data in the early years versus the late years of the data set. If the

coefficient on intensity goes up with the time fixed effect model, it is sugges-

tive of an important bias from censoring. In addition, storms in the early

part of our data may be missing due to a lack of observation or reporting.

In the Appendix, we present results of our damage and fatalities functions

using only observations from countries that reported storms throughout the

sample. In addition, drop all observations before the advent of major global

satellite programs beginning in 1970. We find no relevant changes in our

results.

3 Results

This section presents our main results using cross-sectional and fixed effects

specifications. We find our results robust to alternative specifications, func-

tional forms, and additional sensitivity analyses. Our robustness checks are

DAT: 1) 10 or more fatalities, 2) 100 or more people affected, 3) a declaration of a state
of emergency, or 4) a call for international assistance (CRED, 2012).
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presented in the Results section and detailed in the Appendix. Additionally,

in the Appendix, we drop near misses, presenting only storms where the eye

of the storm struck landfall.

3.1 Fatalities

Table 1 shows the regression results for our fatality function using all coun-

tries. Columns 1, 2, and 3 are cross-sectional regressions. Column 1 presents

a basic regression. Column 2 decomposes the underlying cyclone frequency

into low, ΠL, and high, ΠH , intensity storms. Column 3 uses maximum wind

speed instead of minimum sea level pressure as a proxy for storm intensity.

Columns 4 and 5 add a year fixed effect. Columns 6 and 7 add a country

fixed effect. Note that the t-statistic on observed coefficients may be used

to test if estimated elasticities are statistically different from zero. We use

the F-test to test if relevant elasticities are statistically different from one.

The signs of the estimated elasticities are as we expected, with fatalities ris-

ing with lower minimum sea level pressure and higher maximum sustained

wind speed, I. Fatalities decrease as the distance from the eye of the storm

increases.
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Using our theoretical thresholds, we find strong evidence of adaptation to

fatalities. The income elasticity with respect to fatalities is less than zero,

β1 < 0, for all specifications, lying between -0.618 and -0.135. This income

elasticity of fatalities is consistent with the income elasticity of the value of

statistical life, found at the global meta-level to be between 0.5 to 0.6 (Viscusi

and Aldy, 2003; Viscusi, 1993). We reject the null hypothesis that the

income elasticity is equal to zero for all specifications, and reject at the 93%

confidence level the more conservative specification in column 7 where the

elasticity is closest to zero. We also find evidence of adaptation to fatalities

with respect to population density, β2 < 1. Using the F-test, we find that the

estimated elasticities are all less than one at the 99% confidence level. Even

though the elasticity is positive (fatalities increase when urban area are hit),

the fatalities per person falls. Urban areas are still safer than rural areas for

an individual. This result may be due to urban policies such as evacuation

plans and building standards, stronger local governments with more health

and rescue resources, or simply an incidental consequence of constructing

dense and sturdy structures in cities (Lindell et al., 2011; Whitehead, 2003).

We find a divided result for the underlying storm frequency. The coeffi-

cient on the frequency of high intensity storms is negative, β5 < 0, implying

people are adapting to more frequent intense storms by taking more precau-

tions. These results are similar to the finding of Hsiang and Narita (2012)

for tropical cyclone frequency. Keefer et al. (2011) also find similar results

with lower fatalities from earthquakes in areas hit more frequently. However,
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we find the opposite result for the frequency of low intensity storms, (ΠL),

as these estimated elasticities are greater than zero, β4 > 0. This finding is

significant at the 95% confidence level in Column 2 through 5. Although this

analysis does not specify the maladaptive mechanism, one possible explana-

tion is that individuals suffer from warning fatigue. Frequent weak storms

pose small risks that do not warrant dramatic responses. With frequent false

alarms, people may stop taking even modest precautions. Lastly, since people

react differently to low and high intensity storms, a variable characterizing

overall frequency of storms, Π, hides this dichotomous relationship. Thus, we

caution against the practice in the literature of assuming that low intensity

and high intensity events would have similar responses (Fankhauser and Mc-

Dermott, 2014; Hsiang and Narita, 2012; Neumayer et al., 2014; Schumacher

and Strobl, 2011; Keefer et al., 2011).
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3.2 Damage

Table 2 shows the results of the damage regressions using data from all coun-

tries. The column specifications are identical to those of Table 1. Damage

increases with the intensity of the storm13 and decreases with distance from

the eye. We find clear evidence of adaptation in the income elasticity with

respect to damage. The income elasticity varies from 0.03 to 0.45. The es-

timated income elasticities are all significantly less than one, α1 < 1. We

perform an F-test and reject (at the 99 percent confidence level) a unitary

income elasticity.14

The population elasticity varies between -.3 and .07. These values are all

significantly less than one, α2 < 1. As population density increases, damages

do not increase. This result indicates damage per person falls in urban areas.

Again this result may be due to conscious policies to adapt urban areas to

storms or it may simply be an incidental result of more sturdy structures in

urban areas.

Lastly, we find the elasticity of damage with respect to storm intensity

to be lower than past literature. For example, the elasticity of minimum

pressure is -29 to -34 whereas previous studies using data from the United

States found values of -86 (Mendelsohn et al., 2012). The elasticity of damage

13Recall that minimum sea level pressure has an inverse relationship with intensity; a
stronger storm has a lower pressure reading.

14These results are also consistent with the findings of Hsiang and Narita (2012). They
scale damages by GDP, so the resulting test for adaptation would be an elasticity of less
than zero, as opposed to our elasticity test of less than 1 without the damage normalization.
Hsiang and Narita (2012) find statistically significant semi-elasticities of between -0.2 and
-0.4, evidence of adaptation.

30



with respect to maximum sustained winds is from 1.7 to 2 which is much

closer to the traditional literature which found damage increases with the

second or third power of wind speed (Emanuel, 2005; Bell et al., 2000; Pielke

and Landsea, 1999). In contrast, the empirical results from US data imply

much higher elasticities of 5 and 9 (Mendelsohn et al., 2012; Nordhaus, 2010).

Based on the Vuong (1989), AIC, and BIC tests, minimum sea level pres-

sure provides a better fit than wind speed15. Minimum pressure may also

reflect other features of the storm such as storm surge and size. It is also

likely that wind speed may be measured with greater error than minimum sea

level pressure (Gray et al., 1991). Wind speed calculations have changed over

time without good documentation whereas minimum pressure reading tech-

niques have remained consistent over time (Emanuel, 2013). Maximum wind

speed is calculated differently throughout the world, with different places

using winds measured for 1-, 3-, or 10 minute sustained periods. As there is

no deterministic relationship between these different measures of sustained

wind speeds, statistical averages must be used to convert them, leading to

measurement error. Finally, some wind speed estimates across the world

have been derived statistically from pressure readings whereas other mea-

sures have relied on rules of thumb making it difficult to track the source of

wind data (NRL, 1998). We also use the PDI and ACE as additional proxies

for storm intensity and present the results in the Appendix. None of these

15We also test using both pressure and wind speed, but both variables become insignif-
icant due to high multicollinearity.
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measures are as effective as minimum pressure and so we recommend the use

of minimum sea level pressure readings to be utilized for damage and fatality

research.
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3.3 Adaptation Across Income Levels

One hypothesis that has been raised with respect to adaptation is that adap-

tive capacity rises with income. We test this hypothesis in Tables 3 and 4 by

examining whether the income elasticity of damage and fatalities is different

for low versus high income locations.16 We create sub-samples of the data

for low income (<$6,500) and high income (>$20,000) locations. We use

locations and not countries to make this delineation. High income locations

come mainly from developed countries but also from wealthy urban centers

in emerging countries. The low income areas come from the least developed

countries and poor rural areas in emerging countries. The differences are not

strictly driven by national policies but also reflect within country differences

between wealthy versus poor areas. Additional income bins are presented

in the Appendix. We then estimate separate regressions on each subsample.

The United States is dropped as an outlier in this analysis. Table 3 reveals

the results for fatalities. The columns vary depending upon the income of the

locations and the use of fixed effects. Columns 1 and 4 are OLS regressions,

columns 2 and 5 have decade fixed effects and columns 3 and 6 have both

time and country fixed effects. Standard errors are clustered at the country

level. To check the validity of the clustered standard errors for subsample re-

gressions with fewer than fifty bins, we also calculate the coefficient p-values

16Income, here, is defined as the actual per capita income of the location in the year of
observed landfall. Therefore, locations can move into and out of of the income definitions
through development. We also present permanent, country-specific definitions based on
their status in the Organization of Economic Cooperation and Development (OECD) in
alternative specifications presented in section 3.5 as well as section F in the Appendix.

35



using wild bootstrapping as described by Cameron et al. (2008) and imple-

mented in Stata with Caskey (2013). The significance of the results do not

change.

Low income locations have an income elasticity with respect to fatalities

from 0 to -0.4 whereas high income locations have an income elasticity from

-1.8 to -2.7. These results provide strong support for the theory that people

adapt to prevent fatalities. The adaptation increases rapidly with income.

The high income location elasticities are statistically different from the elas-

ticities of low income locations at the 99% confidence level. The results for

higher income locations imply an income elasticity of about 2 for the value

of life. This is much higher than the results in the value of life literature

(Viscusi and Aldy, 2003; Viscusi, 1993) which are closer to the results for

places with low incomes. The remaining coefficients of the fatality model are

not different for the two subsamples.

Table 4 presents the damage results for low and high income locations.

The columns in each damage regression are identical to those in Table 3 for

fatalities. The income elasticity of damage for low income locations varies

between 0.35 and 0.61 whereas the income elasticity varies between -1.7 and

-2.3 for high income locations. All included countries show signs of adapta-

tion to economic damage and, once again, the results imply that adaptation

increases rapidly with income, even overcoming the scale effect of more in

harm’s way. The damage income elasticity results are similar to the pro-

jections from an environmental Kuznets curve, with damages first increasing
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and then decreasing with income (Shafik, 1994). The estimated population,

intensity, and distance coefficients are not statistically different between low

and high income countries. Lastly, we note that by grouping countries to-

gether by income level, we can minimize bias introduced by any potential

non-reporting of storm impacts. The intensity coefficient is larger for wealth-

ier countries, consistent with poor countries underreporting small storms, but

the coefficients are not statistically different. Therefore, we believe any bias

introduced by non-reported storms is likely to be small.

3.4 Adaptation Across Urban Versus Rural Areas

The large country data set also allows us to compare the national versus the

local importance of population density. We make two comparisons. First, we

compare countries with higher than average population density versus coun-

tries with lower than average density. Second, we compare where storms

struck urban versus rural localities. Do dense (more than 200 people per

kilometer squared) versus sparse nations react differently to storms? Do ur-

ban versus rural communities react differently to storms? The fatality results

are shown in Table 5. Column 1 (dense) and Column 2 (sparse) compare the

fatality regressions for different countries. The income coefficient is nega-

tive in both regressions but it is significantly more negative for more dense

countries. The population density is negative and significant only for dense

countries. The only other coefficient that is significantly different between

the two sets of countries is the frequency of high intensity storms. More dense
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countries reduce fatalities in response to being hit more frequently by intense

storms whereas less dense countries do not respond. All these results suggest

that more dense countries are more actively engaged in reducing fatalities

(adaptation) compared to less dense countries.

Column 3 and Column 4 of Table 5 examine the fatality regressions of

urban versus rural localities. The results are quire similar to the national

results. The urban coefficient on population density is negative whereas the

rural coefficient is positive, though significantly less than one. More frequent

low and high intensity storms decrease deaths in urban areas but not in rural

areas. All of these results suggest that adaptation is more active in urban

compared to rural localities. The one piece of information that suggests ur-

ban areas are more at risk concerns their response to storm intensity. The

intensity coefficient is significantly more negative for urban counties imply-

ing they are more vulnerable to more intense (lower pressure) storms. More

intense storms lead to more deaths in urban areas compared to rural ar-

eas. Although urban areas generally reduce fatalities more than rural areas,

they have more difficulty reducing the deaths associated with more powerful

storms.

We make similar comparisons about the damage function in Table 6.

Damage in more dense nations is more sensitive to population density. The

most dense countries in the dense sample have lower damage per storm.

More dense countries also have a lower sensitivity to intensity. The damage

in sparse countries is more sensitive to more powerful storms. So there is
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evidence that population density at the national level generally increases

adaptation.

Comparing urban versus rural local effects, the local damage results are

often consistent with the national damage results. For example, population

density has a bigger negative effect on damage in cities than in rural areas.

However, some of the results are different when comparing local areas. Local

income is negative for urban areas but positive for rural areas. In fact, the

income coefficient for rural areas is not significantly different from 1 implying

no adaptation in rural areas. Another significant difference between urban

and rural counties is their response to the frequency of high intensity storms.

More frequent powerful storms reduce the damage per storm in both areas

but the reduction is three times as large in urban areas.

The overall results suggest that there is more adaptation happening in

cities compared to rural areas and in countries with higher population density.

But there are exceptions to this rule such as the higher sensitivity of fatalities

and damage to storm intensity in cities versus rural areas.
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3.5 Comparing United States Versus Global Damages

Earlier tropical cyclone studies have noted that the damage in the United

States appears to be an outlier compared to the rest of the world (Schu-

macher and Strobl, 2011; Hsiang and Narita, 2012). The results from pre-

vious damage estimates using United States data are also different from the

global results (Nordhaus, 2010; Mendelsohn et al., 2012). We consequently

test whether the damage function of the United States is different from the

damage function for the rest of the world. We seek to understand why the

United States appears to have much higher damage per storm. We calculate

an F-statistic of 30.90, rejecting the null hypothesis that the United States

damage coefficients are equal to the rest-of-the world coefficients at the 0.1

percent level. In contrast, for fatalities, we calculate an F-statistic of 2.26

and fail to reject the null hypothesis of similarity at the 10 percent level. We

also conduct the Chow Breakpoint test to determine if the estimated coeffi-

cients of subsamples of the entire sample are statistically different from each

other. For the damage regressions, we calculate a chi-squared statistic of

60.32, rejecting the null hypothesis at the 0.1 percent level that the explana-

tory variables have the same relationship on sub-groups of the data. For

the fatalities regressions, we calculate a chi-squared statistic of 3.54 and fail

to reject the null hypothesis at even the 40 percent level. So the American

damage function is significantly different than the rest of the world but the

fatality function is not.

For our final analysis of adaptation, we compare the United States with
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just the other countries from the OECD and estimate a damage function

for each region (see Table 7). This is a more careful comparison because it

controls for the level of development. We find that the American constant,

coefficient on storm intensity, and income elasticity is significantly larger than

the results for the other-OECD countries. These three variables explain

why the American damage per storm is higher. Working in the opposite

direction, the American coefficient on population density is more negative

which reduces the damage relative to the other OECD countries.

We then calculate what the American damage would be if we used the

damage coefficients for the other-OECD regression. The damage per storm

would fall from $2.0 billion to $166 million, over an order of magnitude drop.

The aggregate annual damage from tropical cyclones in the United States

would fall from $15.3 to $1.2 billion. We also estimate the damage in the

other-OECD countries if they had the damage function of the United States.

The damage per storm in the other OECD countries would increase from

$231 million per storm to $9.4 billion, a forty fold increase. There is no

question that the United States is far more vulnerable to tropical cyclones

than other similar countries, controlling for the frequency and intensity of

storms and for income and population density.
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3.6 Robustness

We present our robustness results in the Appendix. Our main empirical

results are robust to alternative variables, functional forms, and additional

sensitivity analyses. We carefully test the shape of the damage and fatality

functions, including linear, log-linear, quadratic, and cubic specifications. We

test the impact of data definitions and additional proxy variables through the

use of both market exchange rate and purchasing power parity income and

GDP per capita. We also test different proxies for storm intensity including

maximum wind speed and minimum sea level pressure, as well as both the

Power Dissipation and Accumulated Cyclone Energy indices. An additional

robustness check drops “near misses”, or hurricanes that do not directly make

landfall, presenting only the results for direct hits. We find that across all of

these specifications, our main results hold.

We also test different estimators, including the negative binomial estima-

tor and the Seemingly Unrelated Regressions (SUR) model. Since we use

identical regressors in both our equations, there is no efficiency gain in the

SUR model relative to the OLS model (Greene, 2003), thus the estimated

equations are identical. We test the applicability of a cross-equation coef-

ficient restriction, but find the estimated coefficients in the damage and fa-

talities equations to be statistically different from each other, thereby negat-

ing the motivation of imposing equality. This makes theoretical sense as

storm and human factors may both impact damage and fatalities in different

and independent ways. Therefore, we leave further exploration of the SUR
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model, using different explanatory variables for damages and fatalities, as

important future work. We also provide additional income bins and estimate

income elasticities of damage and fatalities across twelve levels of develop-

ment. Across all of our robustness checks, we confirm the conclusions of our

main empirical results.

We additionally test the impact of national versus subnational data in

calculating elasticities. Relying on storms that struck large countries, we

compare the results using vulnerability measures (income and population

density) at the national scale versus the county scale in the Appendix. Na-

tional socioeconomic data allows us to identify the broad differences across

levels of economic development and federal policies. County-level data sheds

light on differences in local vulnerability and adaptation across the same

storms. Details of the results are discussed in the Appendix, but broadly,

our results suggest that there is more adaptation at the national scale rather

than the local scale, highlighting the importance of our subnational data.

Finally, the Appendix presents additional calculations mentioned in the

paper. We provide the results of our capital formation assumption, show-

ing that capital scales linearly with changes in income and population. We

present the fatality results comparing the United States to the rest of the

world and to just other OECD nations.
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4 Conclusion

This paper develops a theory of adaptation to tropical cyclone damage and

fatalities in order to test for the presence of adaptation. The theory provides

several new ways to test for adaptation by comparing empirical parameters

of damage and fatality regressions against hypothetical parameter values one

might expect if there was no adaptation. We also test hypotheses raised in

the literature concerning the adaptation response by areas that are more

frequently threatened.

We then conduct an empirical analysis based on a new spatially-explicit

historical dataset of more than 1,400 storms that have caused serious damage

or lives lost over the last 50 years. We match the damage and fatalities of

each storm with the cyclone characteristics at landfall and the characteristics

of the impacted local area struck. A set of multiple regressions are then

estimated with this new dataset to test for adaptation. Several tests are

undertaken. First, we look at economic damage and explore whether the

elasticity of income and to a lesser extent the elasticity of population density

is unitary. Second, we look at fatalities and explore whether the elasticity

of income is negative and whether the elasticity of population density is

less than unitary. Third, we test if there is a negative relationship between

impacts and the underlying storm frequency. We decompose these main

findings into adaptation across levels of development and urbanization. The

primary evidence of adaptation lies in the income and population density
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results. There is also evidence of a small adaptation effect with respect to

frequency. The actual damage and fatalities are much less than potential

damage and fatalities as if no adaptation measures were being undertaken.

There are useful policy insights from these results. Most of the world ap-

pears to have taken effective precautions to reduce fatalities. Overall, fatal-

ities from tropical cyclones have fallen over time, suggesting an increasingly

effective adaptation. As incomes rise, fatalities fall. As population density

increases fatalities do not increase proportionally. Places with more frequent

high intensity storms manage to reduce fatalities. Unfortunately, places with

more frequent low intensity storms have slightly higher fatalities per storm.

It is not clear why fatalities per storm would increase with common storms.

Perhaps there is a failure in the warning system for low intensity storms.

There are also indications that life saving techniques have not permeated

everywhere. Over the last two decades, Myanmar and Bangladesh are re-

sponsible for 77 percent of the global fatalities from tropical cyclones.17

There are also powerful results on the damage from tropical cyclones. The

results strongly suggest that higher income increase adaptation. As incomes

rise, damage does not rise proportionally. The income elasticity of damage

is less than one in every country except the United States. As countries

develop, the damage from tropical cyclones will be a smaller component of

their income. The damage even falls with higher incomes amongst the OECD

countries (except the United States). There is also strong evidence that per

17Calculated by the authors using data from CRED (2012).
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capita damage is much lower in urban areas. To the extent that development

increases both incomes and urbanization, these factors will help reduce the

future damage from storms. Development encourages adaptation to natural

disasters.

This research reveals adaptation to tropical cyclones is ongoing in most

of the world and is terribly important. However, the study does not provide

critical details about this adaptation. How much of the adaptation is being

done by private actors and how much by local and state governments? How

much adaptation is in hard structures such as barriers and how much is insti-

tutional adjustments such as land use planning? Very little is known about

the distribution of damage within a tropical cyclone. Where is the damage

concentrated? How far inland do effects spread? What other characteristics

of a storm besides frequency and intensity may be important? What best

explains the vulnerability of a location?

The analysis reveals important insight concerning publicly available data.

Available climatological information about tropical cyclones has substan-

tially improved largely because of the ability of satellites to track and mea-

sure storms across the planet. However, the data about damage remains

poor. First, EMDAT does a remarkable job of reporting the damage of

global tropical cyclones but they have a very small budget given their global

task. Second, there is no consistent methodology to measure storm damage.

Some countries use replacement costs for old buildings, others use insurance

payments to quantify losses. Third, spatially detailed measures of damage
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across local places struck by storms are not collected. The absence of this

data makes it difficult to assess what features of each storm cause damage

(winds, storm surge, precipitation, size, or speed). It is also difficult to deter-

mine what makes each area and each structure vulnerable. Why is damage

higher in one place versus another within an impacted zone? If society

wishes to asses what specific adaptations need to be undertaken, it will need

more spatially precise damage measurements.

One final insight concerns the damage function of the United States ver-

sus the rest of the world. Since 1990, the United States has been responsible

for 60% of global tropical cyclone damage even though it is struck by only

4% of global storms.18 The reason appears to be the damage function of the

United States. The income elasticity in the United States is unitary (the

income elasticity in all other countries is less than one). This result implies

there is no adaptation in the United States. The constant term and the

elasticity with respect to intensity are also significantly higher than in other

countries. Applying these different coefficients to past storms, the American

damage function leads to fourteen times the damage of other OECD coun-

tries. These curious results deserve additional research. Are these effects

because of a missing variable suggesting much greater vulnerability in the

United States? Or do these results suggest there is something very wrong

with American public policy that is somehow suppressing adaptation and in-

18If we remove Hurricane Katrina from this statistic, the United States represents 50.7%
of observed damages in our dataset.
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stead encouraging American assets to be in harm’s way? Do the subsidized

public flood insurance, state caps on coastal insurance rates, and the gener-

ous emergency relief programs of the United States combine to reduce the

incentive to adapt in America? Whatever is causing American damage to be

so much higher than the rest of the world is causing extraordinary damage

along the Atlantic and Gulf coasts of the country.
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